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Abstract

General purpose technologies like information technology typically require complementary firm-
specific human and organizational investments to create value. These complementary invest-
ments produce a form of capital, which we call Information technology-related intangible capital
(“ITIC”). An understanding of how the accumulation of ITIC contributes to economic growth
and differences among firms has been hindered by the lack of measures of the stock of ITIC.
We use a new, extended firm-level panel on IT labor investments (1990-2016) along with Hall’s
Quantity Revelation Theorem to construct measures of both the prices and quantities of ITIC
over the last thirty years. We find that 1) prices vary significantly for ITIC, 2) significant quan-
tities of ITIC have been accumulating since the 1990s, with ITIC accounting for at least 25%
of firms’ assets by the end of our panel, 3) that it has disproportionately accumulated in small
subset of high-value, superstar firms, and 4) that the accumulation of ITIC predicts future
productivity.

1 Introduction

Superstar firms, unique in their ability to innovate, scale, and profit, are increasingly important in

the US economy (Autor et al., 2020; Hall, 2018; Van Reenen, 2018; De Loecker et al., 2020). Much

of the rise in the concentration of power in these firms has been attributed to intangible investment

(Crouzet and Eberly, 2018; Ayyagari et al., 2019; Covarrubias et al., 2019). Intangibles related to
∗Correspondence: tambe@wharton.upenn.edu. Comments are appreciated. We are grateful for valuable feedback
from Guy Berger, Di Mo, Diego Comin, Frank Nagle, Chad Syverson, and Jonathan Haskel and from seminar
participants at MIT, the NBER Conference on Research on Income andWealth, the Workshop on Information Systems
and Economics, the International Conference on Information Systems, LinkedIn, the Brookings Institute Initiative
on Productivity Measurement, the NBER Conference on Artificial Intelligence, and the INFORMS Conference on
Information Systems and Technology. We thank the LinkedIn Economic Graph Research team for providing access
to firm-level skills and employment data.
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digital technologies are likely to play a particularly important role, although these intangibles are

difficult to measure. For instance, as of February 2020, the five most valuable firms in the S&P 500

were all firms from the tech industry – Microsoft, Google, Facebook, Amazon, and Apple. Moreover,

their share of the market has been growing. Figure 1 illustrates that as a fraction of the overall value

of firms in the S&P 500 index, the value of the top five most valuable firms has been increasing

since about 2010, with an especially rapid rise in this fraction in the last few years. This paper

examines the accumulation of digital intangible assets in superstar firms and finds that it is part of

a decades-old trend.

As the economy becomes increasingly digitized, there is little doubt that IT-related intangible

assets have grown in importance. For instance, there has been a wave of interest in the potential of

data analytics and artificial intelligence (AI) to be the next important general purpose technology

that drives economic growth and business value (Brynjolfsson et al., 2018). Yet, the complementary

intangible assets needed to realize value from technologies such as these – assets like the cumu-

lative investment in skills training, new decision-making structures within the firm, and software

customization – often account for significantly greater total costs than the technologies themselves,

but remain poorly measured. Even when the total value of these intangible assets can be estimated,

fundamental distinctions, such as their price and quantity, remain elusive. This price-quantity dis-

tinction is especially important as it is the quantity (stock), not the value (price x quantity), that

contributes to a firms’ productive capacity. Moreover, the stock of these intangible assets may be

particularly important for explaining performance differences between new digitally-focused firms

and older firms.

The management practices, business processes, and firm-specific skills that complement IT in-

vestment comprise IT intangible capital (hereafter, referred to in this paper as “ITIC”1) (Hall, 2001;

Brynjolfsson et al., 2002). Inputs to this capital include the investments firms make into becoming

effective information processing organizations, including investments in organizational transforma-

tion that facilitate rapid information acquisition, decision-making, innovation, and employee skill

acquisition. The growing importance of these investments has been the subject of an academic lit-

erature (e.g. see Bresnahan et al., 2002; Black and Lynch, 2001; Corrado et al., 2009; McGrattan

and Prescott, 2010; Eisfeldt and Papanikolaou, 2013; Crouzet and Eberly, 2018; McGrattan, 2020;
1In a later section, we present a more comprehensive definition of IT intangible capital.
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Wu et al., 2020).

The economics of ITIC are, in many ways, similar to physical capital such as factories or man-

ufacturing equipment. Firms invest in ITIC to increase their capacity to produce in future years.

While these assets take time to build, the market value of firms should reflect the expected net

present value of the cash flows they can generate. Furthermore, like physical capital, ITIC can de-

preciate over time and must be replenished through additional investment. However, unlike physical

capital, intangible capital is, by definition, difficult, if not impossible, to see or touch, which creates

measurement difficulties. In addition, the value of intangible capital may be closely tied to a par-

ticular firm and sensitive to external economic conditions, so it can fluctuate more than the value

of assets such as buildings or property which are more fungible and have active secondary markets.

Reflecting these difficulties, generally accepted accounting principles often fail to reflect the value

of new business processes or other types of organizational capital on a firm’s balance sheet.

Prior work has reported correlations between IT investments, firms’ market value, and the risk-

reward profile of firms’ traded assets. This tells us something important about the value and pricing

of these assets (Bharadwaj et al., 1999; Brynjolfsson et al., 2002; Dewan et al., 2007). The value

the market assigns to these assets, however, cannot tell us about their productivity or contribution

to economic growth because it is the stock of ITIC, rather than its value, that matters for growth.

If ITIC is costly for organizations to build, higher market values may reflect small improvements

in aggregate productive capacity, with most of the increase in market value reflecting rents. On the

other hand, if ITIC is inexpensive to create, high values reflect genuine improvements to productive

capacity. Finally, as ITIC becomes a greater component of overall capital stock, the distribution of

ITIC across firms (driven by the accumulated stock as well as variations in the marginal cost of

investment in ITIC), may increasingly explain differences in performance across firms.

Historically, measurement of the stock of IT intangibles has proven elusive. Gross investment in

ITIC is largely invisible (to researchers) and depreciation rates are unknown, so the methods that

are conventionally used to assess the accumulation of capital stocks cannot be easily applied (e.g.

see Hall, 1993). For other assets, one might use market transactions (such as a lease or resale price)

to derive prices, but there are no markets through which prices for IT intangible capital can be

directly and readily observed.

This paper uses an alternative approach to create measures of changes in the prices and quan-
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tities of ITIC in US firms over the last three decades. Earlier work has shown that under certain

assumptions, the quantities of a firm’s capital stock–and specifically, its intangible capital stock–

can be inferred from the value of its securities (Solow et al., 1960; Baily, 1981), and that the values

inferred using this method reasonably describe the accumulation of intangible assets in US firms

over the second half of twentieth century (Hall, 2001). None of this work, however, has – to the

best of our knowledge – applied these methods to firm-level data, which is important because it

precludes the application of these intangible capital stock measures to explaining the distribution

of productivity among firms.

The central contribution of this work is in using new IT investment data along with Hall’s

approach to provide the first measures of prices and quantities of IT intangible capital. Prior work

has been limited to examining how proxy measures (such as the use of particular work practices) are

associated with excess value or productivity differences. In doing so, this paper is able to directly

tie the flow of services firms derive from their IT intangible capital to economic outcomes such as

productivity. The identification of these flows and their economic properties can then be used to

explain productive differences across firms.

The ability to measure ITIC creates further possibilities to measure the implications of ITIC

accumulation for important macroeconomic trends. A second contribution is applying our mea-

surement framework to investigate the connection between the digital economy and the rise of the

superstar firms. Our results suggest that the emergence of superstar firms is closely connected to

the accumulation of ITIC.

To compute measures of ITIC quantities, we adapt Hall’s approach, which infers the stock of

capital from its value, to separate ITIC quantities and prices from market values (Baily, 1981; Hall,

2001). While Hall computed his estimates on aggregate (economy-level) data, it has previously not

been possible to perform the estimates at the firm level because the recursive nature of the approach

requires a sufficiently-long time series. Existing data on firm-level IT-related investments such as

the CITDB database (also known as the Harte-Hanks database) is too short and lacks the necessary

year-to-year consistency needed for Hall’s approach (due to, among other things, significant changes

in data collection methods and sampling). Thus, an indispensable input to this analysis is a new

firm-level data series on a key input to many forms of ITIC2, IT-labor based on data from LinkedIn,
2Such a measure potentially misses some forms of ITIC, such as open source software repositories. Later in the
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a popular online professional network website (http://www.linkedin.com).

To compute these measures, we use LinkedIn profiles to track to the employment of informa-

tion technology workers by firms, and we make a variety of adjustments to account for sampling

differences across occupations, regions, and industries. Details of this measure construction and

benchmark tests of the data are provided later in the paper. The data source that is generated

extends and improves upon prior approaches that computed IT labor inputs from employment data

(e.g., Tambe and Hitt (2012b)). With this longer and more precise series on IT labor, combined

with other, more conventional, firm-level financial data, we can recover estimates of ITIC quantities

and prices from a time series of changes in ITIC values.

This work builds on prior research connecting IT investments to the productivity differences

of US firms (Dewan and Min, 1997; Stiroh, 2002; Brynjolfsson and Hitt, 2003), and the important

role in this relationship played by complementary organizational investments (Bresnahan et al.,

2002). In contrast to these latter studies, we measure the quantity of intangible capital directly

rather than making inferences about its presence through observing correlations between business

practices and IT investment, productivity or market value. While this approach cannot identify

the specific business practices that make up ITIC, it has the advantage of creating an aggregate

measure of the overall stock of ITIC without having to identify and measure all of its constituent

investments. Once this stock is identified, it becomes possible to study the properties of ITIC and

the distribution of these ITIC assets across firms and over time. As noted earlier, the separation of

price and quantity of ITIC also enables a distinction between ITIC-related rents and increases in

productive capacity.

Our approach reveals four important findings about the role of ITIC in explaining features of the

modern economy. First, the market value of ITIC rose sharply during the late 1990’s but then fell

in the early 2000’s, reflecting changes in the price of ITIC during the dot-com boom and subsequent

bust.

Second, the value of ITIC began to rise again from 2010 onward, with the timing coinciding

with a wave of innovations based on big data, data science, and most recently, AI. With the impor-

tant exception of the period corresponding with the dot-com boom and subsequent bust, the long

run increases in value can largely be attributed to changes in ITIC quantities, rather than prices.

paper we are explicit about the mapping between a firm’s IT labor measure and its ITIC.
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Quantities of ITIC fairly steadily rise over the course of our thirty year panel. By the end of the

panel, ITIC quantities account for 20%-25% of the levels of physical capital for firms in our sample.

Third, there is substantial heterogeneity among firms in terms of quantities of ITIC they own,

with most of the increase in quantities concentrated the subset of superstar firms, which we define

as those within the top decile of our sample in terms of market value. This concentration can be

observed not only in terms of aggregate ITIC accumulation, but also for the development of ITIC

on a per employee basis, and it contrasts with patterns of accumulation of other assets such as those

classified as property, plant, and equipment. Furthermore, heterogeneity has been increasing during

the course of our panel, as the top firms have pulled further and further away from the rest.

Fourth, by creating firm-level measures of ITIC quantities, we can estimate how the accumulation

of this form of capital contributes to productivity and growth. In productivity regressions, we place

our ITIC quantity measures along side IT capital stock measures from the late 1990’s and find that

the contribution of ITIC to growth during this period was approximately double that of IT capital

stock. Moreover, ITIC is most predictive of productivity levels about three years in the future,

suggesting that while its value is reflected in firm’s stock prices immediately, it takes several years

to fully install into the firm and become productive. Consistent with this finding, the contribution

of ITIC to productivity in long-differences grows larger over longer difference lengths.

In sum, because we have access to technology and skill data at the firm level, we can estimate

not only how quantities of ITIC have been growing, but also how these quantities vary across firms,

and how this might be connected to the growing importance of superstar firms in the US economy.

2 Theoretical framework: Asset values and adjustment costs

2.1 Defining IT intangible capital (ITIC)

By “ITIC”, we refer in this paper to factors of production that are i) complementary to recorded

investment in IT assets (such as hardware and software), but ii) that are not otherwise recorded on a

firm’s balance sheets. Examples include employee training related to new information technologies,

firm-specific human capital related to technology systems, and the development and implementa-

tion of business processes and other forms of organizational transformation required to support new

information technologies. There are many forms of intangible capital that are not IT intangible cap-
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ital, such as brands and intellectual property, and some of these have been studied in the literature.

If these types of capital are not correlated with the firm’s IT investment, they will not be measured

by the empirical approach we use below and therefore are not measured as IT intangible capital.

Some capital that complements IT investment, such as general human capital, is not owned by the

firm and it is not part of the firm’s IT intangible capital.

Firms produce IT intangible capital through investment. Like other types of capital, IT intangible

capital produces a flow of services that is useful for business operations. Unlike most forms of

tangible capital, however, IT intangible capital can not easily be used for collateral and it cannot

be exchanged on secondary markets which makes it hard to measure its unit price, and therefore,

to infer quantities from measures of value.

2.2 Theoretical framework

Our goal is to reveal differences in firms’ quantities of IT intangible capital. The notion that the

value of a firm’s securities reveals its capital stock has appeared in several forms in the literature

(Solow et al., 1960; Baily, 1981).

In this paper, we rely principally on Hall’s formulation, which is applied to intangible assets. Hall

argues that under assumptions of 1) competitive markets, 2) constant returns to scale production,

and 3) full factor adjustment, prices and quantities of tangible and intangible capital can be recovered

from the value of a firm’s securities (Hall, 2001). The main difference in our approach is that we

estimate key parameters with firm-level data, using a time-series of investment into a correlate of

the intangible investment. In addition, rather than using the total value of a firm’s securities as our

dependent variable, we use the component of its market value correlated with IT investment. After

separating ITIC values into prices and quantities, we use the quantities to estimate the contribution

of ITIC to productivity.

From Hall (2001), we have two equations relating investment and market value in the presence

of adjustment costs:

Vt/Kt = qt (1)
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qt = 1 + c′(it/Kt−1) (2)

The first equation indicates that the ratio of market value (V ) to dollar of capital value (K)

is Tobin’s q (1). Then, the adjustment cost condition is that the marginal q value is 1 plus the

marginal cost of adjustment at that amount of investment growth ( it
Kt−1

) (2). The 1 represents the

numeraire price of capital purchase costs and the adjustment cost function is assumed to be convex

in time. We follow the convention in Hall (2001) (following Hayashi (1982)) that demonstrates an

equivalence between the average q in (1) and marginal q in (2).

Once capital is installed in a firm, its value to shareholders is greater than its purchase price,

reflecting the adjustment costs competitors would incur to duplicate the same productive capacity.

This leads to values of q that exceed 1. Further, sunk adjustment costs can lead to an ex-post quasi-

rent of installation equal to the difference between the competitive value of installed capital less the

firm’s specific adjustment cost. The sum of these values accrues to the shareholders to produce the

identity:

V (t) =

J∑
j=1

qj,tKj,t (3)

The market value of the firm at time t is the sum of the values of its constituent assets, priced

at their respective q values. Solving the system of equations above leads to a convenient way to

recover q and K at some time t if we know the market value and previous period’s capital stock of

the firm.

Not knowing the adjustment cost function precisely, we have that:

c′(it/Kt−1) = c′(
Kt − (1− δ)Kt−1

Kt−1
) = qt − 1 (4)

We can observe market values, and we have to pick a starting capital value to solve the recurrence

relation above. With last period’s capital stock and the current market value, we can infer q and

K in the current period. This also requires knowing the adjustment cost function. If we assume a

quadratic function for adjustment costs (Holt et al., 1960; Hamermesh and Pfann, 1996; Belo et al.,

2014), we can solve for the convexity of the adjustment cost function with a similar recurrence
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relation.

c(
it

Kt−1
) =

αt

2
(
Kt −Kt−1
Kt−1

)2 (5)

c′(
it

Kt−1
) = αt(

it
Kt−1

) = qt − 1 (6)

These two equations are taken directly from Hall (2001). Convexity need not be symmetric, and

in that paper the downward adjustment alpha is set to a constant value that is ten times the upward

adjustment alpha. Asymmetric adjustment might motivate regression specifications that include a

dummy and interaction term to distinguish growing firms from shrinking firms. But importantly

the recurrence relation can extend to difference quotients to get a time-varying estimate of alpha.3

The marginal adjustment cost at a given level of net investment per unit of capital stock in the

previous period is equal to the q value of investment in the current period minus the numeraire.

From equation 1, we have that q is equal to the market value of a given asset divided by the

asset replacement value. The point where the marginal adjustment cost function meets the q value

hyperbola defines the equilibrium price and quantity of capital (Hall (2001) illustrates this as shown

in Figure 2). With measures of a capital panel Kt and net investment it (or gross investment and

asset-specific depreciation rates), these equations can be solved to yield qt and Kt.

Note that the q curve can be interpreted as the full market value of the firm or the q values

of specific assets. Cash, for example, has low adjustment costs, so the supply curve of cash is close

to flat with a price of one dollar. Property, plant, and equipment has a higher installed price. The

reason is that the asset replacement costs are set in competitive equilibrium. Differentiation in

adjustment costs of highly liquid assets like cash is likely limited. The market does not permit rents

in assets with no protection from competition. Sometimes capital quantities can be inferred from

secondary market prices or from estimates of capital rents. However, in the case of intangible assets,

this is generally not possible.

Rather than solving directly for q we can estimate the following hedonic regression from observed
3With the additional assumption that q is stable, the second order condition is useful for recovering an approxi-

mation of αt as follows:
c′′(

it
Kt−1

) = αt (7)
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capital stocks and observed market values to recover the q value as a vector of coefficients.

Vi,t = K′i,tβ +X′i,tξ + γi + νt + εi,t (8)

The value of a firm is decomposed into its constituent assets K with controls X and fixed effects

for firm i and time t. If all assets are measured perfectly then the coefficient vectors return the asset

q values. Note that the controls and fixed effects are not necessarily required.

3 IT investment time-series

3.1 IT labor measures

Applying this approach to intangible capital measurement requires a measure that serves as a

correlate to the firm’s IT capital stock. We use IT employment as a proxy measure for annual IT

investment.4

The IT labor measures are constructed from data on the employment histories of US IT workers,

which are used to infer the distribution of IT employment in US firms. The data were obtained from

LinkedIn, the leading online professional network upon which individuals post employment histories,

which include data on each job they have held: information on employer, job title, and years spent at

the firm. The data on employers generally include name, size, and industry.5 We use the employment

histories of the workers on LinkedIn who have job titles identifying them as IT workers to measure

IT employment in public firms over the duration of our panel.6.

In brief, using the employment histories of all US workers who post on the site, we generate

a proxy measure for IT workers on the website employed at each firm-year combination. Because

these employment histories archive prior employment spells, we can trace backwards in time to

create historical firm-year employment measures for a set of workers. We then employ a variety of
4Our analysis is based on a hedonic regression of the firm’s market value on its capital assets. We relate IT labor

to the firm’s IT capital stock by making the assumption that a dollar of IT capital requires a fixed amount of IT
labor to maintain it. That is, a firm that doubles its IT capital would require twice the IT labor to maintain it. This
assumption allows us to use IT labor expenditure as a proxy measure for the firm’s aggregate IT capital stock. Prior
work that has examined correlations between IT capital and IT employment at the firm level finds a correlation of
0.56 for those measures in levels (0.62 for those measures in logs) (Tambe and Hitt, 2012a).

5The data were obtained in early 2018, but we only use the years through 2016 as the lag in workers updating
their profiles can otherwise add significant noise to our measures.

6Tambe (2014) uses a similar approach
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sampling adjustments that account for varying rates of site participation by year, occupation, and

other factors that can influence the number of workers who post on the site to create a normalized

IT employment measure for each firm-year. For a more detailed discussion of the measure creation,

sampling adjustments, and validation of these measures using other data sets with known sampling

properties (e.g. the BLS Occupational Employment Survey), see Data Appendix A.

A similar approach, using different sources of IT employment information, has been used in prior

work (Tambe and Hitt, 2012b). That data source included years until 2007, so the data used in this

paper adds approximately a decade of additional observations. For this analysis, IT employment,

which is a proxy for IT labor expenditures, offers some advantages when compared to other available

proxies that one might use for IT investment such as the CITDB database, which has probably been

the most commonly used database used to measure firm-level IT spending (e.g. see Bresnahan et al.

(2002)).

Our IT labor series spans a longer time period, which is important for two reasons. First, it

is available on a consistent basis through the dot-com boom, the bust, the Great Recession, and

through the last decade of technology spending which includes the rise in investment in big data,

data science, and machine learning. Because the data analyzed in earlier work on IT value ends in

the mid- to late-1990’s, this addresses a significant gap in terms of observability of IT spending.

Second, in the absence of direct measures of spending on IT-related infrastructure, the wages paid to

IT labor are the principal observable inputs into the construction of ITIC. In other words, firms can

build new information structures around old IT capital, so IT wages may be a more relevant input

to firm-level ITIC investment than IT hardware spending, especially given the rapid adoption of

cloud computing in recent years which has decoupled total IT investment from direct expenditures

in IT hardware. Moreover, IT labor tends to be a much higher component of IT spending than IT

capital in recent years.

IT employment has been used in earlier work as a measure of IT spending (Lichtenberg, 1995;

Tambe and Hitt, 2012b), but the consistency of the time series over almost three decades makes

the dynamic recursion methods used in this paper newly feasible, and the availability of firm-level

measures (rather than an industry or economy-level time series) allows us to take these data to the

question of how these differences matter for heterogeneity in firm-level outcomes.
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3.2 Discussion of measurement error

The data we use are collected through a partnership with LinkedIn, not scraped, so we are not

subject to types of measurement problems that arise when using scraped or incomplete data from

a website. However, many workers do not participate on LinkedIn, and some of those who do might

report inaccurate or incomplete employment history information, which can generate error in our

IT employment measures. The high participation rate of IT workers within the US on the LinkedIn

platform suggests that measurement error should be less than what we might otherwise observe

in the CI IT capital data or other comparable IT data sources. Prior work has argued that the

error variance in the data on CI capital may be as high as 30-40% of the total measure variance

(Brynjolfsson and Hitt, 2003) and that employment data, as a proxy for IT investment, are subject

to less measurement error (Tambe and Hitt, 2012b).

Another source of measurement error when using IT labor as an IT input measure is IT employ-

ment outsourcing, which can include investments in cloud computing. If firms outsource a significant

fraction of their IT employment, they would appear to derive the full value of IT investment from

their in-house and outsourced labor inputs but IT labor expenditure would be under-reported. The

impact of IT employment outsourcing for the use of measures of this type is considered in Tambe

and Hitt (2012b). Using survey data, that analysis finds that including measures of IT outsourcing

directly in regressions of internal IT employment on value (productivity) does not substantially

change the estimated value of IT labor. Various indicators have placed outsourcing at about 10-15%

in terms of the total budget. This compares with about 14% or so in the sample from Tambe and

Hitt (2012b). In either case, this compares favorably with the 30-40% measurement error if using

historical firm-level IT capital stock data. It is also useful to note the direction of biases imposed

by missing data on IT outsourcing. If firms all out source fractions of their IT employment that

are similar, it will not impact our estimates, and if outsourcing levels are random with respect to

the firm’s IT spending, it should attenuate the coefficient estimates on IT and understate measures

of the value of ITIC. If larger, more valuable firms use more IT outsourcing, it should lower the

estimated contribution of IT to value.
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4 Descriptive statistics and empirical analysis

4.1 Data, sample, and statistics

Applying the Quantity Revelation Theorem to uncover firm-level ITIC quantities requires a firm-

level time series of market and asset values that includes a correlate measure for ITIC as described

above. To create a panel from these measures, we combined the IT labor series with firms’ market

values and assets collected from the Capital IQ database. Below, we report results from an analysis

of two different panels, 1) a balanced panel consisting only of firms that appear in all years from

1987 to 2016 (n=277), and 2) an unbalanced panel over the same time period that can include firms

that enter or exit the panel (n=5,215). Test performed on the balanced panel have the advantage

of consistency in sample composition over the duration of the panel, but they exclude firms that

fail part way during the sample period as well as firms that only appeared in the late 1990’s and

after. For the balanced panel, the firms are disproportionately larger, older, and more established

firms, so on a per-employee basis, our estimates of IT intangible capital using this sample could be

understated.

In Table 1, we report key statistics from the firm-level data in our panel. Statistics are reported

from firms’ 2005 values, where the year 2005 was chosen because it is close to the midpoint of our

panel but is not during the dot-com bust, which triggered large layoffs in IT sectors. The figures in

the table indicate that firms in our sample are large, with an average market capitalization of about

35 billion dollars and with about 60,000 employees. The average firm in our sample has slightly more

than 3,000 IT employees, which can be compared with BLS Occupational Employment Statistics

that report that the IT workforce comprised slightly more than 2% of the overall US workforce in

2005.7 This difference suggests that IT labor is employed in disproportionately larger numbers by

the firms in our sample. The Data appendix contains more detailed comparisons of occupational

coverage in the LinkedIn data.
7The BLS Occupational Employment Statistics reports that employment in Computer and Mathematical Occu-

pations accounted for 2.27% of total US employment in 2005. Historical BLS occupational employment statistics can
be found at https://www.bls.gov/oes/tables.htm. Last accessed on July 3, 2019.

13



4.2 ITIC market values, prices, and quantities

4.2.1 IT and market value

Table 2 reports results from regressions of market value on PP&E, IT, and other inputs using the

Tobin’s q framework shown in 8. The form of this regression is similar to that used in prior work

Brynjolfsson et al. (2002) (hereafter, referred to as BHY) except that our IT investment data source

is different and the panel is longer. These regressions a) benchmark how the IT employment data

perform in market value regressions and b) estimate contributions of IT investment to market value

in a panel that post-dates the IT data used in existing firm-level research by almost two decades.

We report estimates from OLS and fixed effects models as well as Least Absolute Deviation (LAD)

models and all of the regressions in the table include year and two-digit industry fixed effects. In a

market value context, LAD regressions minimize the impact of outliers (e.g. very large market value

firms) on the estimates, although our point estimates do not change substantially when using these

methods. For ease of interpretation, we scale the IT employment measures to millions of dollars by

multiplying it by 0.10, which implies a cost of $100,000 per “unit” of IT labor. Below, we discuss

how this wage assumption affects interpretation of our estimates. We first present results from the

larger unbalanced panel and then for the balanced panel of firms for which data are available for all

the years in our panel.

We first replicate results from earlier studies using our IT employment dataset. Column (1) of

Table 2 replicates the specification from BHY, using IT capital stock measures for the years from

1987 to 1998, constructed from the CITDB data, which is the same data set that was used in that

paper.8 For the unbalanced panel, estimates on Property, Plant, and Equipment (PPE) and other

assets (total assets minus physical capital) are close to their expected theoretical values of one, plus

an increment for adjustment costs for that type of capital. The coefficient estimate on IT capital
8A detailed description of how these capital stock figures were created can be found in Brynjolfsson et al. (2002).

Some of the description is replicated here for convenience, but the paper has additional details. “The measures of
computer use were derived from the Computer Intelligence Infocorp (CII) installation database, which details IT
spending by site for Fortune 1000 companies. Data from approximately 25,000 sites were aggregated to form the
measures for the 1,000 companies that represent the total population in any given year. This database is compiled
from telephone surveys that gather detailed information about the ownership of computer equipment and related
products. Most sites are updated at least annually, with more frequent sampling for larger sites. The year-end state
of the database for each year from 1987 to 1997 was used for the computer measures.55 From these data we obtained
the total capital stock of computers (central processors, per- sonal computers, and peripherals). The IT data do
not include all types of information processing or communications equipment and are likely to miss some portion of
computer equipment that is purchased by indi- viduals or departments without the knowledge of information systems
personnel.”
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indicates that a dollar of IT capital is associated with about 12 dollars of market value although

standard errors are large so we cannot reject the the hypothesis that the contribution of this type

of capital to value is zero. However, it is notable that the point estimate is very close to the BHY

estimates which found that each dollar of computer investment was correlated with 11 dollars of

market value.

In column (2), we substitute our new IT employment based measures for the IT capital measures,

while using the same restricted time period used in column (1). The point estimate on IT employment

suggests that a dollar of IT labor is associated with between eight and nine dollars of market value

(8.62, t=1.80). Interpretation of the magnitude of this estimate in dollar terms is sensitive to our

assumptions about IT wages. If IT workers earn more than we have assigned on average, it will

lower the estimate, and if they earn less, it will raise the estimate. Unlike IT capital, IT labor is

not owned by the firm’s shareholders. Therefore, most of the dollar value implied by the coefficient

estimate on IT labor should be assigned only to intangible correlates and their adjustment costs.

That is, we do not need to subtract out the contribution of IT labor to the firm’s market value.

Column (3) includes both IT measures in the same regression. The change in estimates on the

IT labor and capital coefficients suggests that IT labor is a more precise measure of this type of

investment, perhaps due to greater measurement error in the IT capital figures (Tambe and Hitt,

2012b) or as might be the case if spending on IT labor is a better indicator than IT capital of

the development of new ITIC (17.70, t=1.83). This would be the case, for instance, if IT workers

could build new IT intangible on old servers or if the use of cloud computing is making measures

of in-house IT capital a less informative measure of computing capacity relative to IT labor.

Having shown that these new data generate results largely consistent with prior results for the

overlapping (but considerably smaller) time period, we now report estimates from our full available

sample that ranges from 1987 to 2016 (see Column (4)). In the extended panel, each IT employee

is associated with about fourteen dollars of employer value (14.12, t=3.44). That is, the coefficient

estimate on IT grows when including the post-2001 years into the panel. In column (5), which

includes firm fixed-effects, the magnitude of the IT estimate falls to nine dollars of market value

per dollar spent on IT labor (9.38, t=2.75). This indicates that about a third of the estimate on the

IT variable from the prior column is due to cross-sectional heterogeneity in firms that invest in IT

and those that do not. Finally, the estimate in (6), which uses a somewhat more precise measure
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of IT wages, rises to about twelve dollars per IT employee (12.10, t=2.39). This more precise wage

measure is computed by using the LinkedIn data to determine the mix of IT occupations within the

firm, and using BLS occupation-level wages to compute the weighted IT wage number. In sum, the

estimates in columns (4) through (6) suggest that in the last decade, the market continued to assign

significant value to IT based assets as estimated when using a proxy measure based in IT labor.

The higher estimate in column (6) than in column (5) is consistent with the idea that measurement

error in IT wages in the prior column slightly attenuates the estimate.

Table 3 shows results for the balanced panel, which is limited to firms that do not enter or exit

the panel between 1987 through 2016. The pattern of results is similar to that reported in 2 although

there is a fall in the magnitudes of the IT estimates, which suggests that the older firms in this sample

have developed less ITIC. Nevertheless, as with the unbalanced panel, the magnitude of the estimate

on IT investment suggests the presence of significant correlated but unmeasured assets. Moreover,

the estimated coefficients when using the IT employment measures suggest effects of similar size

on the larger panels and the estimate in column (3) is again consistent with the argument that IT

labor is a more precise measure of the firm’s IT assets than our IT capital measures.

4.2.2 Prices and quantities of ITIC

Recovering prices and quantities for ITIC requires a time-series of ITIC values. To estimate year-

to-year changes in the value of firms’ ITIC, we use the specification in equation 8 with the balanced

panel, but we limit the sample for each regression to observations in a window around the focal

year.9 The IT coefficient estimates generated using this approach are shown in Figure 5. They rise

and fall in a pattern that is consistent with some of the changes in levels of IT investment that

occurred from 1995 through 2001, the so-called dot-com “boom”, and again in the years after 2010,

which coincides with a recent wave of investment around data collection and mobile technologies

and the data science and AI tools that are increasingly being used for data-driven decision-making.

Figure 6 plots the average of the imputed ITIC values for firms in the balanced panel over the

course of our panel. The average ITIC value (i.e. the component of market value correlated with

measures of IT employment) has fluctuated substantially, and the dot-com bubble and bust appears

to have had a significant effect on the value of ITIC computed using this method. For the average
9See Table 3 of Brynjolfsson et al. (2002) for use of a similar approach.
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firm in our panel, ITIC values rose to about five billion dollars during the height of the dot-com

boom, before falling to about half that number in the years following the bust. These values then

continued to fall through the early and mid 2000’s, before beginning to rise again shortly after the

Great Recession and onward through the most recent time period covered in the sample.

The fluctuations in ITIC value shown in Figure 6 suggest changes in the value of firms’ ITIC

over time. The conditions in equations 1 and 2 enable us to separate the role of changes in price

and quantity in explaining these changes in value. Solving this system of equations, Figures 7 and

8 depict how the prices and quantities of IT intangible capital have been changing for these firms

during the years covered by our panel. The prices and quantities shown in the charts are average

values for firms in the balanced panel.

The dominant feature for the price series in Figure 7 is its rise and subsequent fall corresponding

to the late 1990’s dot-com boom and bust. The theoretical prediction is that as Tobin’s q for this

asset rises above one, firms will invest greater amounts into the asset. This theoretical relationship

appears to be consistent with the two illustrations, as the rise in Tobin’s q corresponds to accelerated

investment by firms during the late 1990’s. The dominant feature in Figure 8 is the rise in ITIC

quantities in the panel, which occurs particularly rapidly during the dot-com boom years.

It is worth noting that, in contrast to the period around the dot-com boom, ITIC prices in

the later part of the panel were stable despite a similar run-up in market values. Aside from the

late 1990’s and early 2000’s, the price stays close to its theoretical value of one. Figure 8 implies

a corresponding accumulation of ITIC quantities, except for a slowdown in the growth rate after

the dot-com bust and a decline in quantities for a few years after. These figures suggest that the

large market value changes around the dot-com boom and bust can be partly attributed to changes

in ITIC price, not only to changes in the quantities of ITIC possessed by the firms in our sample.

The bust removed the effects of investor mispricing from ITIC values and the slowdown in the

accumulation of ITIC stocks continued through the Great Recession. In contrast, there is little

evidence that changes in price explain the more recent increases in ITIC value.

To place the growth of ITIC quantities in perspective, we can compare how ITIC growth com-

pares to the growth of physical capital. Figure 9 makes this comparison explicit. By the end of

our sample period, our imputed ITIC quantities had grown to approximately 25% of the size of

measured physical capital. It is worth noting that the sample for this comparison is the balanced
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panel, which does not include any firms such as Google or Facebook which were founded later. In

that respect, this comparison is likely a conservative one.

4.3 Firm-level heterogeneity in ITIC

The construction of firm-level measures allows us to analyze how firms differ in terms of ITIC. In

particular, there has been growing interest in the literature in the concentration of some types of

capital in superstar firms in the US economy (Autor et al., 2020; Hall, 2018; Crouzet and Eberly,

2018; De Loecker et al., 2020). Using the firm-level data generated on ITIC quantities, we can

compute distributional statistics on how ITIC has been accumulating in firms. Our approach to

measuring ITIC is particularly useful here as we define superstar firms based on market value, so

removing the effects of ITIC price and focusing solely on ITIC stock removes the possibility that

superstar firms appear to have more ITIC because they receive greater value for all their assets.

Figures 10a and 10b plot changes in the prices and quantities of ITIC when grouping firms in

the sample into four quartiles according to their market values in the final year of the panel. In the

two figures in the top panel, the different trend lines in each chart correspond to one of the four

quartiles. The most salient feature in this set of charts is the figure at the top right which shows

that there is a relative concentration of ITIC quantities in the highest quartile group and that the

gap in ITIC quantities between the top quartile and the bottom three quartiles has been growing

larger over time. In contrast, there appears to be less accumulation of ITIC in the lower quartiles

and essentially no accumulation in the two bottom quartiles at all. Even within this limited sample

of firms that appears in the balanced panel, therefore, there is evidence that the accumulation of

ITIC assets is in line with a rise in the concentration of assets among US firms.

The charts in Figures 10c and 10d further subdivide firms in our sample into even narrower

groups: into deciles in the bottom left figure and into ventiles in the bottom right figure. Both

charts echo the finding of Figure 10b, which is that ITIC quantities are concentrated in firms at the

top of the distribution in terms of market value. ITIC appears to be especially concentrated in the

top decile of firms, and this group seems to be pulling away from other firms during the years in

the panel.

It is notable that this result cannot be driven principally by new digital firms because, as

mentioned above, these firms are not in the balanced panel sample. Our sample censors Google,
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Facebook, LinkedIn, and other technology-intensive firms that emerged in years after the beginning

of our panel. Therefore, the divisions in these charts are even more striking because the sample does

not include firms that we might consider to be the most obvious suspects for this type of effect. We

make the effects of this sample restriction explicit in Figure 11 which uses the unbalanced panel

which includes the newer firms that we might expect to be the most ITIC-intensive. Relative to the

result from the balanced panel, average ITIC quantities fall because the unbalanced sample includes

firms that enter midway during the panel and are smaller. The key observation, however, is that for

the unbalanced panel, differences between the top decile and other deciles are even more pronounced

than those shown in Figure 10b. This is consistent with what we would observe if relatively more

ITIC-intensive firms are entering the panel. For this sample of firms, an even greater fraction of the

total ITIC is concentrated in the highest decile firms in terms of market value.

Part of this concentration effect may be due to the fact that capital of all types may have been

accumulating in firms that were growing larger than others during the years covered by our panel.

This would not be inconsistent with our prior arguments, but it is useful to determine whether

the growth in ITIC concentration is in proportion to the change in concentration in other assets,

or whether ITIC is accumulating in higher value firms at a rate that outpaces that of overall

asset concentration. The charts in Figure 12 suggest that ITIC may be unique in its pattern of

accumulation in more valuable firms, at least when considered in relation to employment share.

Figure 12a illustrates ITIC quantities per employee. In contrast, Figures 12b and 12c show changes

in quantities of two other asset types normalized by employment: property, plant, and equipment as

well as a measure of all other types of recorded assets (i.e. all assets excluding ITIC and PPE). These

two figures indicate that while there is rising concentration within decile for these different asset

classes, only ITIC is rising faster than employment share in higher value firms. In other words, after

normalizing by employment, quantities of ITIC per worker were becoming particularly concentrated

in the highest decile firms in terms of market value.

The Gini coefficient of the overall concentration in assets is plotted in Figure 13 and these

findings echo those shown in Figure 12. Figure 13a shows that while concentration levels have been

rising for most assets, it has been rising more rapidly for ITIC for those firms in our sample. This

rise in the concentration was most rapid in the years that immediately followed the dot-com bust

but the rising trend has continued in recent years. Similar and even more pronounced trends can
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be observed in Figure 13b, which plots changes in concentration of the employment normalized

measures of ITIC quantities. In this plot, concentration rises rapidly after 2000, but plateaus after

the Great Recession in 2008. Within the last decade, therefore, most of the rise in concentration in

ITIC from Figure 13a has been moving in step with growth in firm size.

Figures 13c and 13d analyze the change in concentration when firms are organized by one-digit

NAICS industry. In these figures, only the four one-digit industries with the highest numbers of

firms are shown: NAICS sector “2” (Construction and Utilities), NAICS sector “3” (Manufacturing),

NAICS sector “4” (Trade, Retail, and Transport), and NAICS sector “5” (Information, Finance,

Insurance, Real Estate, and Professional Services). Figure 13c suggests that ITIC appears to ac-

cumulating mostly rapidly within firms in firms in the NAICS “5” sector and that most of the

concentration effects documented earlier are due to a rise in concentration within this sector. In

contrast, there does not appear to be a significant change in concentration in the other three sec-

tors.

4.4 ITIC and productivity

The IT productivity literature has found that the estimated output elasticity for IT capital in

firm-level productivity regressions is typically two to three times larger than its cost share (see e.g.

Brynjolfsson and Hitt (2003)). Researchers have suggested this discrepancy is due to the output

contribution of omitted but correlated factors of production such as the types of intangible assets

that, in this paper, we call ITIC. Directly computing measures of ITIC quantities at the firm-level

allows us to separately estimate the output contributions of IT capital stock and ITIC stock. It

is worth nothing that production functions are engineering definitions which require measures of

amounts (i.e. capital stocks) to estimate output. The overall value of a firm’s IT assets would be of

little use here. Therefore, it is precisely the separation of IT market values into prices and quantities

– the central contribution of this paper – which newly enables this type of analysis.

Table 4 reports results from productivity equations that include measures of labor, non-IT

capital, and IT capital along with ITIC in the same balanced panel of firms that was used to

compute ITIC quantities. We assume production can be approximated by a Cobb-Douglas function,

which has been the model of production most commonly used in the literature in this area, and

the dependent variable we use is value-added, which is computed as output minus materials. The
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CITDB IT capital stock measures used in the regression are the same measures used in prior work

on IT productivity at the firm-level unit of analysis (Brynjolfsson and Hitt, 2003). These data were

collected through surveys, and they have the limitation that the data consistency begins to decline

after the mid 1990’s and particularly after 2000, so we limit our productivity estimates using these

data to a shorter panel of years that ends in the late 1990’s.

Column (1) includes IT capital, but not ITIC, as a factor of production and the estimated

coefficient on the IT capital term suggests an output elasticity (0.037, t=2.31) that is similar to that

found in other work that performs cross-sectional comparisons. Directly introducing ITIC measures

in column (2) produces estimates which indicate that the contribution of ITIC to value-added is

positive and about the same order of magnitude as IT capital (0.034, t=2.12). However, the relative

magnitude of the coefficient estimate on ITIC stock is lower than what might be expected from

survey based estimates of the shares commanded by each of these inputs. For instance, Saunders

and Brynjolfsson (2016) estimates that 70-80% of IT spending is on complementary organizational

assets. One possible reason for the smaller than expected estimate is that the years that comprise

most of the sample in our productivity regression are the late 1980’s and early 1990’s, which as

shown in our earlier figures, precede the larger run-up in ITIC capital stocks in this sample of firms.

We can directly test this assertion in column (3) by restricting our sample to observations that

appear in the latter part of the sample used in column (2). The sample in column (3) is limited to

the years 1997 to 2000, which were associated with a rapid increase in quantities of ITIC capital.

The coefficient estimates on ITIC from these years suggest an output elasticity for ITIC that is

more than double that of IT capital stock (0.093, t=1.90). In column (4), we introduce narrower,

two-digit industry controls to remove some of the effects of industry-level heterogeneity on these

estimates. This specification produces estimates of the output elasticity of ITIC that are similar

in magnitude but they are no longer significant. Column (5) adds R&D investment as a factor of

production that generates another type of intangible asset, intellectual property. R&D has been

used extensively in prior work on the measurement of a firm’s intangibles.

To the extent that ITIC is serving as a proxy measure for other intangibles, including R&D

may absorb some of this effect. R&D investment is not available for all of the firms in our sample

(typically because the innovative investments in some industries cannot be treated as R&D under

standard accounting principles), so we also include a dummy variable which indicates that data is
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not available for the firm. The ITIC estimates are of the same magnitude as the estimate in (2)

which covers the same years, although in the limited sample, the estimate is no longer significantly

different than zero. Because the figures we produced earlier suggested that ITIC quantities grew

substantially after 2000, these productivity estimates probably provide a lower bound on more

recent contributions of ITIC to productivity. Unfortunately, we do not have firm-level measures of

IT capital stock in more recent years.

Errors in the measurement of ITIC quantities will not only exert a downward bias on the ITIC

coefficient estimate, but also transmit an upward bias on the IT capital stock measure because of the

correlations between these two inputs. Fixed-effects estimates may remove some of this measurement

error, but they may also remove some of the estimated effect of ITIC if the input varies slowly, and

prior work has argued that IT organizational assets do change slowly relative to IT capital because of

the high costs of organizational transformation and re-engineering (Bresnahan et al., 2002). Columns

(6) and (7) report estimates after introducing firm fixed-effects. The magnitude of the coefficient

estimates on IT and ITIC in column (6) (0.026, t=2.00) and column (7) (0.023, t=1.92) are similar

in size although slightly smaller than in the cross-sectional regression results from columns (2) and

(3) of the table.

Table 5 augments these analyses with measures of the firm’s human capital computed from the

LinkedIn data. The literature on skill-biased technical change links human capital to the productivity

of digital enterprises. It argues that information technologies are complementary to higher levels of

human capital in workers. Moreover, the notion that technology investments and skilled workers are

key inputs into the production of ITIC is reflective of Hall’s argument that college-educated workers

are the key input into building “e-capital” (Hall, 2000), suggesting how these two are related in

terms of a production relationship. In other words, technology and human capital are inputs into

the production of ITIC, which in turn, increases productivity levels.

Table 5 estimates a production function for ITIC capital stock that uses IT and human capital

as inputs. The dependent variable in this table is ITIC intensity (i.e. computed on a per employee

basis). Independent variables are capital intensity, IT intensity, and human capital intensity where

all measures are entered in logs. Measures of IT and human capital intensity are also standardized

to aid interpretation of coefficients on interaction terms between the two. The regression output

in column (2) indicates that higher levels of IT are correlated with the overall ITIC stock (0.146,
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t=5.41), but combinations of greater IT and human capital intensity are correlated with still greater

levels of ITIC intensity (0.042, t=2.80). These estimates are consistent with the claim that these

two factors are complementary in the production of ITIC. Columns (3) and (4) reproduce these

tests after including firm fixed-effects. The significant coefficient estimate on the interaction term

persists, in column (4), after including firm fixed-effects (0.031, t=3.44), which indicates that the

development of ITIC in firms coincides with simultaneously raising levels of IT and human capital.

These results suggest that ITIC is a form of productive capital stock that is generated by

combining technology and human capital (as well as other, possibly unmeasured complements).

However, intangible capital of this type may time to install and become productive (Brynjolfsson

et al., 2002) and especially so in larger, higher value firms which require greater organizational

changes, but for which the payoff to productivity may be higher (Tambe and Hitt, 2012a). The

next table tests the hypothesis that although ITIC is reflected in current market values, it impacts

productivity only after a delay. Table 6 tests timing for the baseline production regression, where

the dependent productivity variable is introduced with varying leads, so moving across the table

tests correlations between levels of the different factors of production and future productivity levels.

All columns in this table include firm fixed-effects. The estimates suggest that ITIC is predictive

of future productivity, as much as it is in current levels. The magnitude of the correlation peaks

at around two years (0.024, t=2.40), which is consistent with the argument that ITIC requires

installation time. Such a pattern, where intangible capital contributes to the firm’s current market

value but does not contribute to productivity levels for a few years, is entirely consistent with the

broader empirical literature on returns to IT investment (Brynjolfsson et al., 2018) broadly and IT

intangible capital specifically (Brynjolfsson et al., 2002).

A second way to test the argument that ITIC requires installation time is by estimating pro-

ductivity in long-differences (Bartelsman et al., 1994; Brynjolfsson and Hitt, 2003). If ITIC requires

time to install, we should observe returns in longer time differences that are larger than those in

shorter time differences. The results of the long-differences tests are shown in Table 7. The first

column of estimates is from the main productivity regression computed in long-differences, where

changes in the difference length, which range from 1 year to 10 years, are shown on the left of the

table, and only the coefficient estimates on ITIC are shown in the table. Moving down the table

(longer difference lengths) corresponds with estimates that grow from .005 in one-year differences
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to .026 in 10 year differences (t=2.36), which is consistent with the argument that ITIC requires

time to be adapted to the organization, and that its productivity effects appear only after a delay.

The second column in the table adds two-digit NAICS industry into the regression, but the pattern

of correlations moving down the table is very similar to that in the previous column. In sum, the

estimates in Tables 6 and 7 are both consistent with the argument that the productivity of ITIC

assets takes several years to fully appear.

4.5 Robustness to assumptions about key parameter values

The construction of ITIC quantity measures as illustrated in Figure 8, is dependent upon assump-

tions about two parameters required for the recursive methods used to recover prices and quantities

from ITIC values, specifically: a) an adjustment cost parameter (α) which indicates the costs of

installing new IT intangible capital into the firm and b) initial quantities of ITIC owned by firms

in the first year of the panel. Hall (2000) argues that using the recursive methods to compute ITIC

quantities in the way described earlier is not overly sensitive to either of these two assumptions. In

this section, we explicitly test the sensitivity of our estimates to these assumptions using the time

series data.

Figure 14a illustrates how the trajectory of ITIC quantities changes when using different values

for the adjustment cost parameter α. In Figure 14a, along with the computed quantity series that

was already shown in Figure 8 (which uses α = 3.0), we also present ITIC quantities generated by

halving and doubling the α parameter (setting it equal to 1.5 and 6.0, respectively). Using these

different values implies larger and smaller costs of installing new capital in the firm, respectively,

and it shifts the computed levels of estimated ITIC quantities up and down, but does not impact

the overall trajectory of the curve. In other words, ITIC quantities follow the same accumulation

path, but assumptions about higher (lower) adjustment costs attenuate (amplify) the increase in

price that occurs around the late 1990’s, and the size of the fall in quantities of ITIC capital that

occurred after the 2001 technology recession.

In Figure 14b, we test how setting initial quantities of ITIC stock to zero affected the ITIC quan-

tities we computed in later years. As an alternative, we change initial ITIC values such that instead

of being zero, they are proportional to firms’ levels of physical capital, 20% and 40% respectively.

As another alternative, we can seed firms with an initial ITIC quantity that is randomly drawn
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from a range between zero and twice the mean ITIC quantity computed for firms in 1990 and then

1995. All of the data series that result from using these alternative starting points are supportive

of the notion that assumptions about initial levels of intangible capital do not significantly impact

inference drawn from subsequent values due to the convergent nature of the process.

In sum, although it is difficult to pin down precise values for firms’ adjustment costs and ITIC

quantities in the years preceding the years in our panel, Figures 14a and 14b support the argument

that estimated ITIC quantities are not particularly sensitive to these two choices in the recursion

model. When these parameters are fixed, the quantity of intangible capital is revealed by its market

value if firms make capital investments in a manner consistent with financial investment theory. Hall

shows that over a long enough panel, this assumption was a reasonable one for the last half of the

twentieth century. It may not describe firms’ behaviors on a year-to-year basis, but is a reasonable

approximation over a longer time period.

5 Conclusions

This paper uses a new firm-level data on IT investment to develop panel measures of IT intangible

capital prices and quantities. In particular, building upon earlier work by Hall and others, we

compute new, firm-level measures of IT-intangible capital quantities which allow us to generate

estimates of the annual growth of this asset, to compare how these growth rates differ among firms

of different value, and analyze how the accumulation of these assets contributes to productivity

differences among firms. We find that by 2016, the stock of IT intangible capital accounted for

about 25% of total capital stock for firms in our sample. Changes in the value of ITIC in the

years before and after the dot-com boom and bust appear to primarily be due to price fluctuations,

and after the bust, firms continued to accumulate significant amounts of IT intangible capital while

prices varied little. The most recent technology-related increases in the market value of firms appear

to be due to changes in quantity, not price, as firms accumulate more and more ITIC.

We find evidence of striking heterogeneity in how ITIC is distributed among firms, with most

of the value concentrated in a small group of superstar firms, particularly those in the top decile

in terms of overall market value. Inequality in ITIC among firms is growing as the top firms pull

further away from the rest. Moreover, per-capita ITIC stocks are substantially greater in firms with
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more educated workers. These findings are consistent with the emphasis that technology intensive

firms place on making investments in training and skills.

Our findings suggest that the higher values the financial markets have assigned to firms with

large IT-related investments in recent years reflect greater ITIC quantities, rather than simply higher

prices for existing assets. In other words, they reflect genuine improvements to firms’ productive

capacity. In fact, we find that ITIC, when included as a separate factor in firm-level production

functions, predicts output and productivity differences among firms. Our estimates of the output

elasticity of ITIC suggest that it is several times greater than the output elasticity of IT capi-

tal. Our estimates are broadly consistent with earlier evidence (Saunders and Brynjolfsson, 2016)

that indicates that IT hardware accounts for only about 10% of total IT-related investment, with

investments in complementary intangibles–that is, ITIC–accounting for the rest.

One interpretation of our findings is that translating organizational innovations into produc-

tive capital requires significant investment in organizational re-engineering and skill development.

Therefore, even if firms have the appropriate absorptive capacity, knowledge of how to construct

IT intangible assets will not automatically generate productive ITIC any more than access to the

blueprints of a competitor’s plant will directly lead to productive capacity.

There are, however, important differences between ITIC and physical capital. Unlike physical

capital, ITIC has diminished value outside the context of the firm. This has implications for firm val-

uation and acquisition, and suggests interesting areas for future research. Development researchers

have traditionally looked at capital accumulation as an engine for growth. The lack of secondary

markets for IT-related intangible assets ties these questions together in an important way to firm

health. When firms are dismantled, ITIC may disappear, so it may be interesting to explore the

specificity and transferability of ITIC. For example, the movement of IT labor between firms may

transfer skills produced through technological investment to new environments. It is worth further

understanding how the rising importance of ITIC, in conjunction with notable differences between

ITIC and physical assets, impacts economic behavior.
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Figure 1: Market capitalization of top 5 firms in the S&P 500

Figure Notes: This chart illustrates changes in the market capitalization of the top
5 firms in the S&P 500 as a percent of the total market value of the S&P 500.
The chart was created by Goldman Sachs Global Investment Research and was re-
produced from https://markets.businessinsider.com/news/stocks/sp500-concentration-
large-cap-bad-sign-future-returns-effect-market-2020-4-1029133505, accessed on May 14,
2020.
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Figure 2: Price and quantity of capital

Figure Notes: This chart is reproduced from (Hall, 2001). It graphs the solution to
Hall’s Quantity Revelation Theorem which solves for the equilibrium price and quantity
of capital.
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Table 1: Summary statistics for firm-level measures

Statistic Mean St. Dev. Min Max N

Market value 35,042.34 64,248.57 143.06 471,424.40 264
PPE 6,158.58 12,808.84 3.74 107,010.00 264
Employment 56.74 137.39 0.32 1,800.00 231
Other assets 14,857.04 38,089.26 55.66 397,677.00 264
IT employment 3,197.72 7,631.98 12.71 93,652.23 264
Value added 4,582.25 7,947.51 21.88 58,131.00 231
Capital 10,262.37 22,297.88 11.89 223,252.00 231
Labor 2,396.43 4,323.38 23.99 39,186.00 231
Materials 12,408.07 28,907.59 40.94 244,953.70 231
Log wage bill 18.03 1.49 13.66 22.54 264

Table Notes: This table reports the summary values of key statistics for firms from the
2005 sample year of the panel. Values are collected from the Capital IQ database, except IT
employment measures, which are generated using the LinkedIn database, as described in the
paper and Data appendix. Wage bill measures are computed using BLS occupational wages
and the occupational mix of the firm as computed from the LinkedIn database. Employment
is measured in thousands, and IT employment figures are not scaled. All other variables are
measured in millions.
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Figure 3: NAICS industry distributions of balanced and unbalanced panels
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(a) NAICS industries in unbalanced panel
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(b) NAICS industries in balanced panel

Figure Notes: These charts illustrate the distributions of firms in the 2005 cross sec-
tions of the unbalanced and balanced panels over major NAICS industry codes (2 digit
level). There are a total of 5,215 firms in the unbalanced panel cross section and 277
firms in the balanced panel cross section.
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Figure 4: Year-to-year measures of firms’ IT employment
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Figure Notes: This chart illustrates changes in measures of IT employment using data
from the two different resume banks where normalized quantities from the two different
resume banks are denoted with the two sequences of plotted points. The height of the
gray bar indicates a synthetic measure that combines the two different data sources into
a single IT employment sequence.
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Figure 5: IT coefficients from year-to-year market value regressions
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Figure Notes: This chart plots the estimated IT coefficient (βIT ) from the regression
MVit = βPPEPPEit+βOAOAit+βIT ITit+γit+εit using a rolling window around each
focal year [-1, +1], and where i indexes the firm and t indexes the year. γ is a vector
of fixed effects that include industry and year. Standard errors are clustered at the firm
level. The shaded region represents the standard error band.
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Figure 6: IT intangible capital (ITIC) market value
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Figure Notes: This chart illustrates average values of IT intangible capital for the firms
in our balanced panel. The market value of ITIC is computed in two steps. First, we
estimate the regression MVit = βPPEPPEit + βOAOAit + βIT ITit + εit using a rolling
window around each focal year. Then, the coefficient βIT for each firm is multiplied
by the firm’s IT employment to compute the component of its market value that is
correlated with the firm’s IT assets.
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Figure 7: IT intangible capital (ITIC) prices
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Figure Notes: This chart illustrates average prices for IT intangible capital for firms
in the balanced panel. The price of ITIC for each firm-year is computed by solving
equations 1 and 2 in the main text, and the index in the chart above is computed by
averaging across firms in each year.
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Figure 8: IT intangible capital (ITIC) quantities
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Figure Notes: This chart illustrates average quantities of IT intangible capital for firms
in the balanced panel. The average quantity of ITIC for each firm-year is computed by
solving equations 1 and 2 in the main text, and the index in the chart above is computed
by averaging across firms in each year.
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Figure 9: Comparison of changes in PPE and ITIC quantities
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Figure Notes: This chart compares year-on-year accumulation of quantities of IT in-
tangible capital with that of Property, Plant, and Equipment (PPE) for the balanced
panel. The average quantity of ITIC for all firms in a year is computed by solving equa-
tions 1 and 2 in the main text. Average PPE quantities for firms are computed from
data from Capital IQ.
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Figure 10: ITIC prices and quantities computed by market value quintiles
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(a) ITIC prices by market value
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(b) ITIC quantities by market value (25%)
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(c) ITIC quantities by market value (10%)
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Figure Notes: These charts illustrate prices and quantities of ITIC where firms are separated into quantiles according
to market values at the end of the panel. Annual quantities are computed by solving equations 1 and 2. Panel (a)
shows prices by quartile and (b) shows quantities by quartile. Panel (c) shows quantities with firms separated into
ten quantiles. Panel (d) shows quantities with firms separated into twenty quantiles. The darker line in each chart is
the top quantile of firms in terms of market value.
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Figure 11: ITIC quantities for the unbalanced panel
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Figure Notes: This chart illustrates average quantities of IT intangible capital for firms
by market value quartile in the unbalanced panel. The average quantity of ITIC for each
firm-year is computed by solving equations 1 and 2 in the main text and then averaged
across firms in each year. The darker line is the top decile group in terms of market
value.
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Figure 12: Per capita values of factors separated by market value quartiles
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(b) Other assets
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Figure Notes: These charts illustrate per capita quantities of different assets where firms are separated into four
quartiles according to their 2016 market values. ITIC quantities for each year are computed by solving equations 1 and
2. Panel (a) illustrates ITIC quantities, panel (b) shows other assets (total assets minus physical capital, including
receivables, inventories, cash, and other accounting assets), panel (c) shows Property, Plant, and Equipment, and
panel (d) shows IT labor. The darker line in each chart is the top quantile of firms in terms of market value.
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Figure 13: ITIC concentration separated by capital type and industry
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(b) ITIC per capita concentration
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(d) ITIC concentration by industry

Figure Notes: These charts illustrate changes in ITIC concentration over time. Panel (a) shows ITIC concentration
and (b) shows concentration in ITIC per capita. Panel (c) charts ITIC by industry, where firms are placed in industries
at the 1 digit NAICS level, and only quantities from the four industries with the largest number of firms in the sample
are shown. Panel (d) shows capital concentration by the same industry categories used in (c).

44



T
ab

le
4:

R
eg
re
ss
io
n
s
of

IT
IC

on
p
ro
d
u
ct
iv
it
y

D
V
:L

og
(V

al
ue

A
dd

ed
)

O
LS

O
LS

O
LS

O
LS

O
LS

F
E

F
E

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

Lo
g(
N
on

-I
T

ca
pi
ta
l)

0.
25
9
∗∗

∗
0
.2
5
0
∗∗

∗
0.
2
5
9
∗∗

∗
0.
2
9
0
∗∗

∗
0
.2
4
2
∗∗

∗
0.
4
0
2
∗∗

∗
0
.3
9
4
∗∗

∗

(0
.0
27
)

(0
.0
2
5
)

(0
.0
3
5
)

(0
.0
4
5
)

(0
.0
2
5
)

(0
.1
1
3
)

(0
.1
0
9
)

Lo
g(
La

bo
r)

0.
67
2
∗∗

∗
0.
6
6
2
∗∗

∗
0.
5
8
7
∗∗

∗
0.
5
9
2
∗∗

∗
0
.6
4
6
∗∗

∗
0.
4
3
5
∗∗

∗
0
.4
2
9
∗∗

∗

(0
.0
44
)

(0
.0
4
7
)

(0
.0
9
7
)

(0
.1
1
2
)

(0
.0
4
8
)

(0
.1
3
9
)

(0
.1
3
8
)

Lo
g(
IT

ca
pi
ta
l)

0.
03
7∗

∗
0.
0
3
1
∗∗

0
.0
3
1

0
.0
1
8

0
.0
1
5

0
.0
2
6
∗∗

0.
0
2
7
∗∗

(0
.0
17
)

(0
.0
1
5
)

(0
.0
2
6
)

(0
.0
2
3
)

(0
.0
1
4
)

(0
.0
1
3
)

(0
.0
1
3
)

Lo
g(
IT

IC
)

0.
0
3
4
∗∗

0
.0
9
3
∗

0.
0
7
7

0
.0
2
2

0
.0
2
3
∗∗

(0
.0
1
6
)

(0
.0
4
9
)

(0
.0
4
7
)

(0
.0
1
6
)

(0
.0
1
2
)

Lo
g(
R
&
D
)

0
.0
6
4
∗∗

∗

(0
.0
1
7
)

R
&
D

re
po

rt
ed
?

−
0
.3
4
6
∗∗

∗

(0
.1
0
1
)

Y
ea
r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

In
du

st
ry

F
E

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
o

F
ir
m

F
E

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

O
bs
er
va
ti
on

s
1,
82
7

1,
82
7

61
0

61
0

1,
82
7

1,
82
7

1,
82
7

R
2

0.
95
1

0.
95
2

0.
92
6

0.
93
2

0.
95
4

0.
98
5

0.
98
5

T
ab

le
N

ot
es

:T
hi
s
ta
bl
e
re
po

rt
s
re
su
lt
s
fr
om

th
e
re
gr
es
si
on

L
og

(V
A
) i

t
=
L
og

(K
) i

t
+
L
og

(L
) i

t
+
L
og

(I
T
) i

t
+
L
og

(I
T
I
C
) i

t
+
ε i

t
.V

A
is
va
lu
e
ad

de
d
(o
ut
pu

t
m
in
us

m
at
er
ia
ls
),

K
is

ca
pi
ta
l,
L

is
la
bo

r,
IT

is
IT

ca
pi
ta
l,
an

d
IT

IC
is

IT
in
ta
ng

ib
le

ca
pi
ta
l.
C
ol
um

n
(1
)
is

th
e
ba

se
lin

e
re
gr
es
si
on

on
th
e
fu
ll
se
t
of

ob
se
rv
at
io
ns

fo
r
w
hi
ch

th
e
C
IT

D
B

IT
ca
pi
ta
ld

at
a
ar
e
av
ai
la
bl
e.

C
ol
um

n
(2
)
in
cl
ud

es
th
e
co
m
pu

te
d
IT

IC
st
oc
k
m
ea
su
re
s.

C
ol
um

n
(3
)
re
st
ri
ct
s
th
e
sa
m
pl
e

to
th
e
ye
ar
s
19
97

to
20
00

an
d
co
lu
m
n
(4
)
us
es

fin
er

in
du

st
ry

co
nt
ro
ls
(t
w
o-
di
gi
t
in
st
ea
d
of

on
e-
di
gi
t
N
A
IC

S
in
du

st
ry

co
nt
ro
ls
).
C
ol
um

n
(5
)
in
cl
ud

es
m
ea
su
re
s

of
R
&
D

as
w
el
l
as

m
ea
su
re
s
of

w
he

th
er

or
no

t
R
&
D

is
re
po

rt
ed

.
C
ol
um

ns
(6
)
an

d
(7
)
in
cl
ud

e
fir
m

fix
ed

-e
ffe

ct
s.

St
an

da
rd

er
ro
rs

ar
e
sh
ow

n
in

pa
re
nt
he

se
s

an
d
ar
e
cl
us
te
re
d
on

fir
m

w
it
h
*,

**
,a

nd
**
*
de

no
ti
ng

si
gn

ifi
ca
nc
e
at

th
e
10
%
,5

%
,a

nd
1%

le
ve
l,
re
sp
ec
ti
ve
ly
.

45



Table 5: Relationship between IT, human capital, and ITIC

Log(ITIC/e)
OLS OLS FE FE

(1) (2) (3) (4)

Log(K/e) 0.296∗∗∗ 0.297∗∗∗ 0.251 0.263
(0.056) (0.056) (0.172) (0.173)

STD(Log(IT/e)) 0.143∗∗∗ 0.146∗∗∗ 0.165∗∗∗ 0.170∗∗∗

(0.026) (0.027) (0.015) (0.016)
STD(Log(HK/e)) −0.010 0.002 −0.021∗ −0.012

(0.013) (0.013) (0.011) (0.011)
STD(Log(IT/e))×STD(Log(HK/e)) 0.042∗∗∗ 0.031∗∗∗

(0.015) (0.009)
Year FE Yes Yes Yes Yes
Industry FE Yes Yes No No
Firm FE No No Yes Yes
Observations 1,801 1,801 1,801 1,801
R2 0.437 0.440 0.843 0.845

Table notes: This table reports results from the regression Log(ITIC/e)it = Log(K/e)it + STD(Log(HK/e)it) +
STD(Log(IT/e)it) + (STD(Log(HK/e)it)× STD(Log(IT/e)it)) + εit where all variables are scaled by employment
and the logged normalized measures of HK and IT are standardized to have a mean of zero and a standard deviation
of one. All columns test the per capita relationships between HK and IT investment and ITIC quantities and include
year fixed-effects. Columns (1) and (2) also include two-digit NAICS industry controls but they do not include firm-
fixed effects. Columns (3) and (4) add firm fixed-effects to the regressions. Standard errors are clustered on firm and
shown in parentheses with *, **, and *** denoting significance at the 10%, 5%, and 1% level, respectively.
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Table 6: Regressions of ITIC on leads of firms’ productivity

DV: Log(Value Added)
0 years 1 year 2 years 3 years

(1) (2) (3) (4)

Log(Capital) 0.245∗∗∗ 0.234∗∗∗ 0.211∗∗∗ 0.226∗∗∗

(0.055) (0.064) (0.065) (0.062)
Log(Labor) 0.657∗∗∗ 0.554∗∗∗ 0.459∗∗∗ 0.330∗∗∗

(0.076) (0.086) (0.082) (0.076)
Log(ITIC) 0.019∗∗ 0.019∗∗ 0.024∗∗ 0.018

(0.009) (0.010) (0.010) (0.011)
Year FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Observations 4,167 3,891 3,646 3,414
R2 0.987 0.976 0.966 0.959

Table Notes: This table reports results from the regression Log(V A)i(t+n) = Log(K)it +
Log(L)it + Log(ITIC)it + εit. V A is value added (output minus materials), K is capital,
L is labor, and ITIC is IT intangible capital. n is number of year leads, ranging from 0 to
3 years. The first column is a regression of value added on the production factors in that
year, the second column is a regression of value added on the production factors used in the
prior year, the third column is a regression of value added on the production factors used
two years prior, and the last column is a regression of value added on the production factors
used three years prior. All four columns include fixed effects for firm and year. Standard
errors are shown in parentheses and are clustered on firm with *, **, and *** denoting
significance at the 10%, 5%, and 1% level, respectively.
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Table 7: Long-differenced estimates of ITIC on productivity

Year diffs Year controls Ind+Year controls Sample size

1 0.005 0.005 3790
(0.004) (0.004)

2 0.008 0.008 3543
(0.005) (0.005)

3 0.013∗∗ 0.012∗∗ 3312
(0.006) (0.006)

4 0.014∗ 0.012∗ 3078
(0.007) (0.007)

5 0.014∗ 0.013 2852
(0.008) (0.008)

6 0.017∗ 0.015∗ 2727
(0.009) (0.009)

7 0.021∗ 0.019 2507
(0.012) (0.012)

8 0.028∗∗ 0.026∗∗ 2298
(0.012) (0.012)

9 0.024∗∗ 0.021∗∗ 2083
(0.01) (0.01)

10 0.026∗∗ 0.022∗∗ 1869
(0.011) (0.011)

Table Notes: This table reports estimates from long-differenced regressions of ITIC and
other factors on productivity. The estimated equation is (log(V A)i,t − log(V A)i,t−n) =
(log(K)i,t− log(K)i,t−n)+(log(L)i,t− log(L)i,t−n)+(log(ITIC)i,t− log(ITIC)i,t−n)+
γ+ εit. V A is value added (output minus materials), K is capital, L is labor, and ITIC
is IT intangible capital, n is the difference length, which varies from 1 to 10 years, and
γ is a vector of dummy variables. The first column indicates the difference length in
years. The second column reports the coefficient estimate on the differenced log ITIC
measure when the regression equation includes dummy variables for year. The third
column reports results when the regression equation includes both year and two-digit
NAICS industry variables. The fourth column reports how sample size changes as the
difference lengths are increased. Standard errors are clustered on firm with *, **, and
*** denoting significance at the 10%, 5%, and 1% level, respectively.
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Figure 14: Sensitivity to assumptions about model parameter values
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Figure Notes: These charts perturb two parameters of the model used to compute ITIC quantities. Panel (a) alters
values of α, the adjustment cost parameter used in equation 7. In the figure, the α parameter is set to three different
values: 1.5, 3.0, and 6.0. Panel (b) alters firms’ starting values of ITIC. The chart plots quantities with initial ITIC
values set to five different levels: i) zero, ii) 20% of PPE, iii) 40% of PPE, iv) a value that was randomly chosen from
between zero and twice the value of the firm mean quantities in 1990, and v) a value randomly chosen from between
zero and twice the value of firms’ mean quantities in 1995.
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A Data Appendix for IT, Intangible Capital, and Superstar Firms

A.1 Data Descriptions

The three datasets used in this paper are 1) online resume data from LinkedIn provided via the
Economic Graph Research (EGR) team, 2) Standard and Poor’s Compustat-Capital IQ Database
(Compustat) for publicly traded corporate financial data, and 3) the Bureau of Labor Statistics
Occupational Employment Survey (BLS OES). Access to LinkedIn’s internal databases and tax-
onomies was arranged as part of an ongoing research partnership between the authors and the EGR
team. Many of the taxonomies and standardization tools, in addition to the data, are proprietary to
LinkedIn. We are grateful to the LinkedIn EGR team for supporting this work, providing valuable
feedback, and making available the data to make our analyses possible.

Accessing Compustat is possible through Wharton Research Data Services (WRDS). WRDS is
available here: https://wrds-www.wharton.upenn.edu/. To get access to WRDS data, you will need
to register for an account through your institution or otherwise.10

The BLS OES data can be accessed here: https://www.bls.gov/oes/tables.htm. These datasets detail
employment counts and salary estimates by occupation. Estimates are available for the entire U.S.
economy, by industry, and by region.

A.1.1 Standard and Poor’s Compustat-Capital IQ Database

Variables Used and Construction The Compustat items used in this analysis include:

• gvkey (firm identifier)
• ticker symbol (firm identifier)
• NAICS (NAICS industry code)
• SIC (SIC industry code - used for years where NAICS was not available in BLS OES)
• fyear (reporting year)
• at (total assets)
• prcc_c (share price)
• csho (common shares outstanding)
• che (cash and equivalents)
• ceq (book value of common equity)
• ppegt (gross property, plant, and equipment)
• intan (book value of intangible assets)
• gdwl (goodwill)
• emp (employee count in thousands)

These financial reporting items are used to construct measures of market value and to inform our
measures of employment in Compustat firms (including by industry and occupation).

A.1.2 Bureau of Labor Statistics Occupational Employment Survey (BLS OES)

Variables Used and Construction First we combine and standardize BLS OES data across
years. The BLS OES data we use for this come from the industry-level estimates of employment

10Account registration is available at: https://wrds-web.wharton.upenn.edu/wrds/?register.
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and salary by 2-digit SIC code (1999 and 2000) and by 3-digit NAICS code (2001-2017) for each
of the 6-digit Standard Occupational Classification System (SOC) Codes. These data constitute a
panel of employment (TOT_EMP) and average annual salary (A_MEAN) by detailed occupation
from 2001-2017 for the entire U.S. economy.

Not all occupations are represented in all industries. Further, the sum of employment in “detailed”
categories adds up to less than 100% of the employment in a given 3-digit NAICS group. We estimate
the residual percentage by proportionally allocating workers to detailed employment categories,
applying the employment mixture of the 2-digit NAICS group to which the 3-digit industry belongs.
For example, if 96.36% of the employment in NAICS 237 (heavy and civil engineering construction)
is represented by occupations with a “detailed” designation in the BLS OES, the residual 3.64% of
total employment will be allocated proportionately to detailed occupational groupings from NAICS
23 (construction). We then add these additional counts to our estimates by detailed SOC code in
NAICS 237 such that the total adds to 100%. This gives us an estimate of the U.S. economy’s
occupational composition in all major industries.

Adjustment to match Compustat The industrial composition of the entire U.S. economy
differs from that of publicly listed corporations. Estimating employment mixes in a specific company
using the industrial composition data from the BLS OES is somewhat noisy. However, by applying
the employment-weighted Compustat industrial composition (using EMP and NAICS/SIC) to the
BLS OES, we build measures of the employment counts and average salaries of all Compustat firms
in aggregate as a subset of the economy. Note that this assumes the international labor composition
of firms in Compustat is roughly similar to their employment mix in the U.S. We have made this
occupation composition constancy assumption, as detailed international data is difficult to obtain
and link to our other data sources.

This aggregated Compustat employment and salary data by occupation-year serves as our main
benchmark for evaluating the overall coverage and consistency of the LinkedIn profile data. The SOC
Codes are crosswalked directly to a LinkedIn employment group, then we calculate total employment
and weighted average salaries by LinkedIn Occupation type. These total employment and weighted
average salaries by LinkedIn Occupation type represent the entirety of Compustat firms, but not
the entire economy. This is how we build our measure of the expected total employment of a
given LinkedIn Occupation type for a given year in all of Compustat. We compare this measure
by occupation-year to counts of profiles reported on LinkedIn within an occupation-year to build a
picture of LinkedIn’s reach for different types of workers.

Note also that some firms do not report EMP or instead there are coding errors in the EMP field.
In the case that EMP is unreported or a firm reports fewer than 100 employees, we replace EMP
with a predicted value from a regression procedure described in a section below.

A.1.3 LinkedIn

Variables Used and Construction LinkedIn’s profile database has over 180 million profile
records. Records consist of a job title and employer and time of employment at a minimum, though
many profiles have data on skills, educational achievements, qualifications, and other resume data.
We build a panel of firm-occupation-year tuples using a set of standardized occupations and firms
available via our research partners on the LinkedIn Economic Graph Research (EGR) Team.
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Standardizing job titles and firms The raw input text job titles for occupations throughout
the global economy vary considerably, even if the work within some groupings of titles is relatively
similar. We apply LinkedIn’s internal taxonomy to aggregate profile-level employment classifica-
tions into standardized groups. This taxonomy is hierarchical; some levels have as many as 20,000
types of occupations, while higher levels (e.g. organizational functional groups) are fewer in number.
We map the level of the taxonomy with the greatest similarity to the 6-Digit SOC Code to a set
of aggregated categories such that each SOC Code can be directly crosswalked to an aggregated
category of LinkedIn occupations (many-to-one). In our final analysis, we have 136 manually con-
structed unique aggregated LinkedIn categories. The many-to-one construction makes adjusting for
LinkedIn’s dynamic coverage of the economy over time more straightforward. Prevalence of some of
these aggregated LinkedIn categories is detailed below.

For standardizing firms to link Compustat-Capital IQ to LinkedIn records, we apply the internal
standardization tools created by LinkedIn matching corporate records to ticker symbols. For addi-
tional matches where a standardized linkage was not present, we employed a mixture of fuzzy string
matching on firm names and corporate weburl identifiers combined with a manual checking process.
This combination of techniques, while subject to some matching error, enabled us to capture merg-
ers and acquisitions and increase the relevant sample size. The number of publicly traded firms is
declining over time for our sample, but LinkedIn’s coverage of the overall economy is growing faster
than this decline. This growth partially offsets downward trends in overall employment from the
Great Recession in 2008-2009. Our match count somewhat declines from 2015 to 2017, leading to
a modest drop in employee counts. These time-varying macroeconomic changes impacting all firms
are one of the primary reasons we include time-period fixed effects in most specifications.

Occupation counts We have restricted our analysis to firms present in Standard and Poor’s
Compustat-Capital IQ database. These firms are well represented on LinkedIn, particularly in the
years from 1999 to the present. While LinkedIn did not exist as early as 1999, many users have
populated their profile data going back into the late 1990s. Position record counts on LinkedIn
within year have climbed steadily over the sample period. Our LinkedIn sample goes until 2017.

Coverage on LinkedIn is not uniform across occupations, firms, or years. Since this variation in
coverage and incentives to report employment poses an empirical challenge for our results, our
analyses deploy calculated “derived” counts of workers in different occupation groupings (especially
IT-related occupations). “Derived” counts refer to coverage-normalized counts given the propensity
for a worker in a particular occupation group at a specific firm in a given year to report their
employment on the LinkedIn platform.

Inferring firm-level employment and coverage LinkedIn’s coverage of Compustat firms varies
across a number of factors in ways that might affect our analysis. We therefore undertake a number
of adjustments to build more accurate measures. LinkedIn position records differ markedly in their
presence on the platform conditional on the time they were active, the firm or organization linked
to the worker, and the worker’s occupation. We build a firm-occupation-year coverage ratio to build
a mapping from the observed LinkedIn profile record counts at each employer in each year of our
Compustat sample. The first step is on average checking what an additional LinkedIn profile would
suggest about the overall employment in a firm-year. We regress the Compustat EMP variable on
LinkedIn profile records for a few different simple specifications in the table below.

Since not all Compustat firms have EMP populated, we can fill in the missing firms’ data with a
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Figure A.1: LinkedIn Employment Records for Compustat Firms
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Table A.1: Prediction of Compustat EMP from LinkedIn Profile Records

(1) (2) (3) (4)

Total Assets 0.00004 0.00004 ∗ ∗ 0.00004 ∗ ∗∗ 0.00003 ∗ ∗∗
(0.0000278) (0.0000187) (0.0000146) (0.0000083)

LinkedIn Worker Count 0.00200 ∗ ∗∗ 0.00192 ∗ ∗∗ 0.00190 ∗ ∗∗ 0.00145 ∗ ∗∗
(0.0005717) (0.0004699) (0.0004729) (0.0003746)

NAICS2-Year FE X
NAICS3-Year FE X
NAICS4-Year FE X
Firm and Year FE X
R2 .3243493 .3897643 .4217879 .9414679
N 53,699 53,607 52,767 53,657

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table Notes: Results are from regressions of the EMP variable (measured in thousands) in Compustat-CapitalIQ’s
North America Annual Firm Financials database on the Total Assets variable and author-constructed aggregate
worker counts from LinkedIn. Specifications (1)-(3) include 2, 3, and 4 digit NAICS code fixed effects by firm interacted
with a set of year fixed effects. Specification (4) has firm and year fixed effects. The estimates are qualitatively similar:
adjusting for total assets and these fixed effects, an additional LinkedIn profile in a Compustat firm predicts an
additional 1.45 to 2.0 employees reported in Compustat-CapitalIQ (coefficients are in thousands of employees). Our
adjustments in the main results use specification (3). Occasionally EMP is not well-populated in Compustat. In the
case that EMP is missing or less than 100 employees, we replace EMP with the predicted EMP from this regression.
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Figure A.2: Comparing LinkedIn and Compustat Employment
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predictive model. We select specification (3) from the table above because it allows for granular
industry-year variation. On average, each additional LinkedIn position record in a firm over the
entire sample period is correlated with another 1.9 employees recorded in the Compustat EMP
field. This coverage, however, hides considerable heterogeneity across years, firms, and occupations.
LinkedIn’s representation in Compustat firms improves considerably from 2000 to 2017. Below are
histograms of firm-level average coverage (LinkedIn profile counts divided by Compustat EMP where
populated) for 2002, 2007, 2012, and 2017. The mean coverage expands each year.

Some firms have more employees recorded in LinkedIn than reported in Compustat. Part of this
reflects occupational mixes at the firm level. Many Compustat employers hire large quantities of
contractors who will report working at their client firm, especially if the client firm is more prestigious
than the contracting employer. On the other hand, worker composition can affect the overall coverage
of LinkedIn by firm. Some occupations are less likely to populate profile information than subothers.

This mixture of issues poses a challenge that the BLS OES survey can help solve. Following the
adjustment of the BLS OES occupation composition by industry to match Compustat’s industry-
level composition, we know the approximate composition of workers by occupation-year in aggregate
across Compustat (maintaining the assumptions described above as well). With the Compustat
EMP variable and regression prediction of firm-level employment for missing EMP entries, we
then have the approximate total employment count in Compustat firms. Applying the BLS OES-
Compustat normalized composition by occupation to the total employment count by year, we derive
an approximate measure of the count of each workers employed in each 6-digit SOC Code across
all of Compustat. We crosswalk these 6-digit SOC employment counts to the LinkedIn internal
taxonomy categories of occupations. Comparing the count on LinkedIn within a category-year to
the overall computed BLS-OES-Compustat count yields an occupation-year coverage rate.
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Let this occupation-year coverage rate be λjt for occupation category j in year t. The firm-year
coverage rate is calculated simply as the total profile record count within a year on LinkedIn divided
by Compustat EMP or, in the case that there are fewer than 100 employees or data missing for
EMP, the predicted value from specification (3) above. This estimate of EMP for firm i in year
t is FirmEmpit. Let the firm-year coverage rate in firm i for year t be θit. To get the LinkedIn
occupation category coverage rate in firm i, occupation j, and year t, we multiply the firm-level
coverage by the occupation-level coverage and divide out the common factor such that the sum over
all derived occupation counts matches FirmEmpit. Specifically,

LIijt
FirmEmpit

=
θitλjt

θjt
(9)

where θjt is the employment weighted-average firm-year coverage rate. The left-hand side of the
equation is the proportion of employment in occupation j for a given firm-year, as the numerator is
the count of profile records in occupation j for a given firm-year. Summing across all occupations
yields 100%, and summing across all occupation employment in that firm-year yields the firm’s
approximate employment. The coverage ratio is represented on the right-hand side, and is our
means of calculating the derived occupation counts in the numerator on the left-hand side that
serve as our primary occupation count measure. A similar procedure is followed in Rock (2019).

The EMP prediction measure mostly preserves the firm coverage histograms above, but for the
firms wherein EMP is replaced by predicted EMP, the coverage rates are shifted toward the model
prediction as shown in the figures below. This has little effect on the analysis, but does allow for
the expansion of the sample size. The spike of additional firms near 50% coverage reflects the model
coefficient in our regression specification.

Inferring occupation-level employment and coverage Our focus for the majority of this
work is the IT sector, where the occupation-level coverage rates tend to be close to the calculated
total amounts across Compustat. LinkedIn reporting rates for knowledge workers are favorably high.
We use the LinkedIn taxonomy’s hierarchical categorization of occupations belonging to Informa-
tion Technology functions at firms. The following occupations constitute the set of worker types
categorized as IT workers for our analysis:

Actuaries, Audio-Visual Specialists, Business Analysis Professionals, Computer-Aided Designers,
Control Systems Engineers, Data Analysts (includes Data Scientists), Data Entry Clerks, Database
and Network Engineers, Economists, Hardware Engineers, IT Consultants, IT Security and Audit
Specialists, IT Support Specialists, IT System Administrators, Market Research Professionals, Mul-
timedia Specialists, Quality Assurance Testers, Research Fellows, Software Engineers, Surveyors and
GIS Specialists, Telecommunications Specialists, and Web Designers.

Some actuaries, for example, might not belong to the IT function. But we include the actuaries who
are designated as IT workers in our sample. For a few occupations, we also include workers outside
the IT function because they are likely IT workers in other departments. Those occupation groups
are:

Computer Aided Designers, Data Analyst, IT Consultants, IT Security and Audit Specialist, IT
Support Specialists, IT System Administrator, Software Engineers, and Web Designers
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Figure A.3: Comparing LinkedIn Counts With Predicted Compustat Employment
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(b) 2007
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Coverage rates for selected occupations in aggregate across Compustat are reported in the plots
below. These coverage rates are calculated using derived count for the denominator according to
the procedure above.
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Figure A.4: LinkedIn Occupational Coverage
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(d) Selected Other

Software Engineers and IT Consultants, by the end of the sample period, are approaching nearly
the full quantity of records that we expect to be represented. Hardware engineers have lower derived
coverage rates overall, but are still well represented.

Other types of IT support staff are also well covered by the LinkedIn data. IT Support is somewhat
overrepresented, perhaps because these occupations are often found in higher proportions abroad
than they are domestically.

Research and analysis staff are also well covered by the data. Interestingly, the creation of the “Data
Scientist” job title shifts the composition of the data and underscores the importance of time-varying
occupational categories and coverage. Many workers who would have previously been categorized
as Database Engineers (often Data Engineers and Data Scientists as we might refer to them today)
start to reclassify their occupational titles between 2009 and into 2012. Our ratios capture these
changes and adjust accordingly.

The above plot describes a selected group of other occupations. Executives, while found in many
different functions, tend to be somewhat overrepresented on the LinkedIn platform. Many work-
ers use their online resumes to describe themselves as executives. While some of these are from
establishments abroad, it is likely the case that some of these titles are aspirational. A number of
other occupations tend to be less well-represented via profile records. Salespeople, physicians, and
transportation specialists have lower coverage rates than workers in the IT and knowledge functions
of Compustat firms.

Human capital measures In addition to position records, a large number of profiles also contain
education records. LinkedIn creates standardized ids for schools and degree types, allowing us to
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aggregate counts of degrees by type within firms by adding the degrees held by a given company’s
employees in a given year. We aggregate these counts for Associate’s degrees, Bachelor’s degrees,
Master’s degrees, research doctorates, medical doctorates, and law degrees. We then create a worker-
level measure of equivalent years of education by assigning 2 years for Associate’s and Master’s
degrees, 3 years for law degrees (J.D.), 4 years for Bachelor’s degrees, and 5 years for research and
medical doctorates. Summing these counts within our occupational classification system allows us
to build a firm-level measure of total equivalent years of education in the workforce. We use this
aggregated equivalent education-year count as a proxy for general human capital in some of our
regression specifications. Equivalent years of education are inflated or deflated by worker category
according to the firm-occupation-year coverage rates that we calculate for the derived counts of
workers by occupation-firm-year.
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